Mark Scheme (Results)
June 2011

GCE Decision D2 (6690) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027672
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

Question Number	Scheme	Marks
(a)	1M1: One equal sign, P and 320 $\frac{\text { Notes: }}{\text { present }}$ 1A1: cao	1M1: correct pivot located, attempt to divide row. If choosing negative pivot M0M0 in (b) 1A1: pivot row correct including change of b.v. 2M1: (ft) Correct row operations used at least once or stated correctly. 2A1ft: Looking at non zero-and-one columns, one column ft correct 3A1: cao. (c)

Question Number	Scheme	Marks
4. (a)	S plays 1 S plays 2 S plays 3 L plays 1 -4 -1 1 L plays 2 3 -1 -2 L plays 3 -3 0 2 Row 3 dominates row 1 so row 1 may be deleted. Let Laura play 2 with probability p and 3 with probability ($1-\mathrm{p}$) If Sam plays 1: Laura's gain is $3 p-3(1-p)=-3+6 p$ If Sam plays 2: Laura's gain is $-p+0(1-p)=-p$ If Sam plays 3: Laura's gain is $-2 p+2(1-p)=2-4 p$	M1 M1 A1 (3)
(b)		B2,1ft,0 (2)
(c)	$\begin{aligned} & -3+6 p=-p \\ & 7 p=3 \\ & p=\frac{3}{7} \end{aligned}$ Laura should play row 1: never, row 2: $\frac{3}{7}$ of the time and row 3 : $\frac{4}{7}$ of the time and the value of the game is $-\frac{3}{7}$ to her.	M1 A1 A1ft A1 (4) 9

Question Number	Scheme	Marks
(a) (b) (c)	Notes: 1M1: Matrix reduced correctly. Could be implicit from equations. 2M1: Setting up three probability equations, implicit definition of p. 1A1: CAO 1B1ft: At least two lines correct, accept $\mathrm{p}>1$ or $\mathrm{p}<0$ here. Must both be function of p. 2B1: 3 lines cao, $0 \leq \mathrm{p} \leq 1$, scale clear (or 1 line $=1$), condone lack of labels. Rulers used. 3M1: Finding their correct optimal point, must have three lines, and setting up an equation to find $0 \leq \mathrm{p} \leq 1$. 1A1: CAO 2A1ft: All three options listed must ft from their p , check page 1, no negatives. 3A1: CAO	

Question Number	Scheme	Marks
5. (a)	$a=1 \quad b=5 \quad c=13 \quad$ Flow $=49$	$\begin{array}{\|l\|} \mathrm{B} 1, \mathrm{~B} 1 \\ \mathrm{~B} 1, \mathrm{~B} 1 \end{array}$ (4)
(b)		M1 A1 (2)
(c)	e.g. SBEHT -7 together with either SBEHDAFGT -2 or SBCEHDAFGT - 2	$\begin{array}{\|l\|} \hline \text { M1 A1 } \\ \text { A2, } 1,0 \end{array}$ (4)
(d)	58	B1
(e)	e.g.	M1 A1 (2)
(f)	$\begin{array}{\|l\|} \hline \text { Max flow }=\text { min cut } \\ \text { Cut through HT, HG, GF, FT } \\ \text { Value } 58 \end{array}$	M1 A1 (2) 15

Question Number	Scheme	Marks
(a)	Notes: $\begin{array}{ll} \text { 1B1: } & a=1 \text { cao } \\ \text { 2B1: } & b=5 \text { cao } \\ \text { 3B1: } & c=13 \text { cao } \\ \text { 4B1: } & 49 \text { cao } \end{array}$	
(b)	1M1: Two numbers on each arc 1A1: cao	
(c)	1M1: One valid flow augmenting route found and value stated. 1A1: Flow increased by at least 2 2A1: A second correct flow 3A1: Flow increased by 9 and no more	
(d)	1B1: cao	
(e)	1M1: Consistent flow pattern >51 1A1: cao	
(f)	1M1: Must have attempted (e), S to T, and made an attempt at a cut. 1A1: cut correct - may be drawn. Refer to max flow-min cut theorem three words out of four.	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027672
June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

